
~ Pergamon 
www.elsevier.com/Iocate/j appmathmech 

J. Appl Math~ Mechs, Vol. 65, No. 6, pp 985-992, 2001 
© 2002 Elsevier Science Ltd 

All rights reserved. Printed in Great Britain 
PII:  S0021-8928(01)00104-6 o021-8928/Ol/$--see front matter 

A METHOD OF DETERMINING THE EXTRANEOUS 
UNKNOWNS IN PROBLEMS OF THE STABILITY 

AND VIBRATIONS OF RODSt 

K. I. R O M A N O V  

Moscow 

(Received 24 August 2000) 

An approximate method of determining the critical loads in problems of the stability of compressed rods has been extended to 
statically indeterminate systems. For this purpose, a method has been developed for solving stability problems when there are 
extraneous unknowns defined by the stationarity condition for the potential energy of the system. It is shown that, combined 
with Grammel's method and Hamilton's variational principle, the method described for determining the extraneous unknowns 
in statically indeterminate systems can also be used in problems of finding the natural frequencies of vibrations of rods. © 2002 
Elsevier Science Ltd. All rights reserved. 

1. T H E  E N E R G Y  M E T H O D  I N  S T A B I L I T Y  T H E O R Y  

In problems of the stability of rods compressed within the limits of elasticity, the energy method is widely 
used [1-5]. In this method, when there is loss of stability without elongation of the axis, the critical force 
is given approximately by means of the formula 

t (to ,~-s 
U = S EJy dz y dz 

P*=T o (1.1) 

where U is the strain potential energy, ~ is the displacement of the point of application of the longitudinal 
force, EJ is the minimum stiffness, l is the rod length, and y(z) is the approximate dependence of the 
deflection on the longitudinal coordinate. Here, the strain potential energy is usually defined by the 
expression 

! 
u=l  ! EJy"2dz (1.2) 

At the same time, the strain energy can be calculated [1] directly in the form 

1 M2dz 
U = ~  FA (1.3) 

where M is a function of the bending moment, defined by the condition of equilibrium of the intercepted 
part of the rod in the strained state. 

It is well known [1, 3] that the use of expression (1.3) is preferable to (1.2) since, when calculating 
U by means of formula (1.3), the accuracy of the approximate solution depends on the accuracy of the 
definition ofy(z) and not on the accuracy of the approximation ofy"(z), which in a number of cases 
can turn out to be lower than the accuracy of the selection ofy(z). 

Furthermore, the energy method, based on the use of expression (1.2), leads to an inaccurate result 
in the case of rods of piecewise-constant stiffness. To confirm the above, consider the example given 
by V.. L. Biderman.:~ 

tPnkl. Mat. Mekh. Vol. 65, No. 6, pp. 1017-1024, 2001. 
:I:BIDERMAN, V. L., The energy method in the theory of the stability of compressed rods. Paper read at the Departmental 

Conference on Applied Mechanics (Resistance of Materials and Dynamics and Strength of Machines), N. E. Bauman Moscow State 
Technological University, 16 April 1993. 
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Fig. 1 

Figure 1 shows a statically determinate rod compressed along its axis by a force P. To determine the 
critical force, we specify a function of the deflections in the form 

Then, by formula (1.1) 

y = A sin(~z/(2~)) 

~2 
P. = -~-~(EJ, + EJ 2) (1.4) 

i.e. when EJl ~ 0 we have P, ~ O, although this should be P, ~ O, since the upper section supports 
no load. 

Solving the same problem using expression (1.3), we obtain M = -Py ,  and consequently 

U-- '2  o ~ = "4" EJ, + EJ 2 

Therefore, on the basis of the energy equation [2] 

U = P,~, 

we have 

P, - 212 ~ EJ l + E j  2 

(1.5) 

In this case, the shortcoming noted above is not present, since, when EJ 1 ~ 0 or EJ  2 --4 0, P, ~ 0, 
which is consistent with the physical sense of the problem. 

In particular, we will compare the accuracy of the solution of the problem for the example in question 
when EJ2 = 4EJ1 = 4EJ. We have 

EJ P" 
5 n 2 1 8 = 6 . 1 6  byformula (1.4) 

~ = 1 2 n 2 / 5 = 3 . 9 4  byformula (i.6) 

[3.65 for the accurate solution [2]. 

(1.6) 
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It can be seen that, when there is considerable inhomogeneity of the cross-section, the energy method 
based on a calculation of the potential energy using expression (1.3) leads to considerably better 
agreement with the accurate solution than the method based on the use of expression (1.2). 

Both approaches are based on an approximate specification of the function of the deflections y(z), 
i.e. the same field of displacements. Therefore, both methods give an overestimate of the critical force. 
The fundamental difference between these two approaches lies in the method for calculating U. 

Further development of the method using the expression M = M(P, y, z) involves its extension to 
statically indeterminate problems, a feature of which is the existence of extraneous unknowns, not 
determined by the equations of statics. 

2. THE G E N E R A L  A P P R O A C H  

The general approach to solving statically indeterminate problems of the stability of a rod compressed 
by a force P reduces to the following. 

1. Taking into account the boundary conditions of the problem, the deflection function y = Af(z) is 
specified approximately, where A is an undefined coefficient. 

2. Using expression (1.3) we determine the strain potential energy U = U(X 1, X2 . . . . .  P, A), where 
X 1, ~ . . . .  are extraneous unknowns of the statically indeterminate problem. 

3. We set up an expression for the potential energy of the system 

10 
"~1! M2dz I p~.y,2dz (2.1) 

I-I=U-P~.= EJ 2 o 

where l0 is the coordinate of the point of application of the force, and determine the extraneous unknown 
quantities X, from the condition of stationarity of H for conservative external forces 

0FI/0X~ = 0, Ol-I/bX2=O .... (2.2) 

4. Equating expression (2.1) to zero, we arrive at Eq. (1.5), from which we determine the critical 
force. 

As a result, a value of the force P = P, is established for which the equilibrium form of the bending 
force can exist. This will be the approximate value of the critical force. 

To illustrate the proposed method, we will consider two examples of statically indeterminate problems. 

Example 1. It is required to determine the critical force for a rod loaded as shown in Fig. 2, with 
EJ = const. 
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Fig. 2 
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We will specify approximately the deflection function in the form of a fourth-degree polynomial 

4 y=a4z +a3z3 +a2z2 +alZ+ao 

the coefficients of which will be determined from the four boundary conditions 

z = 0 :  y = y ' = 0 ;  z = l :  y = y " = 0  

The deflection function that satisfies these conditions has the form 

v = A f ( z ) ,  f ( z )  = z 4 5 lz 3 +3/2z2 
" - 2  2 

The bending moment is determined by the equation of equilibrium of the intercepted part of the 
rod in the strained state 

M = X( l  - z) - Py = X( l  - z) - PAy(z )  

where X is the unknown reaction at the upper support. 
The strain potential energy U, the displacement of the point of application of the force, and the 

potential energy of the system I-I have the form 

X213 X P A l  6 19p2A219 
U = - -  - - +  

6EJ  3 0 E J  5040EJ  

i t 
_ r  , 2 d z = ~ A 2 / 7  

~'= 2~ y 70 

[1 = U -  P~, 

Reaction X is determined by the condition 3FI/3X = O, whence we obtain 

X = PAI3/IO 

The strain potential energy corresponding to the value of X obtained is equal to 

U = 159P2A 219/(75600EJ) 

From the condition FI = 0 we find the critical force 

P,  = 20.4EJll  2 

which differs from the accurate value [2] by 1%. 
The solution of the same problem by means of formulae (1.1) and (1.2) gives 

P,  = 2 IEJ/l:' 

which differs from the accurate solution by 4%. 
Thus, the energy method based on formula (1.3) leads to a more accurate result than the approximate 

solution using formula (1.2). 

Example  2. It is required to determine the critical force for a rod loaded as shown in Fig. 3, with 
E J  = const. 

The boundary conditions and the corresponding deflection function have the form 

z = 0 :  y = y ' = 0 ;  z = l l 2 :  y=0;  z = l :  

19x3 5x2 y : Af(x), f ( x ) = x S - I I x 4 +  - -  
4 8 8 

x = z/l 

y = y " = 0 ,  

The displacement of the point of application of the force 
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k = 23A2/(I0080l) 

The bending moments are determined by the equations of equilibrium of the intercepted parts of 
the rod in the strained state (the right-hand part of Fig. 3) 

M (I) = - P y  - X t (112  - z )  + X2(I  - z )  

M (2) = - P y +  X2(I - z) 

where X1 and Xz are extraneous unknown quantities. 
The strain potential energy 

U =  I I 2 M ( i ) 2 d  z (2) dz (2.3) 
2EJ 

The extraneous unknown quantities are determined by conditions (2.2), which are obviously equivalent 
to the equations 

3U / 3X, = O, 3 u  I Ox 2 = 0  

We differentiate function (2.3) with respect to X1 and X2. We thereby obtain a system of two equations 
in a form similar to the canonical system of the method of forces with transverse bending [2], 

8,iX 1 +~,2X2 +A,0 =0, / = 1,2 (2.4) 

] 112/  I ~2 l 112 / I "h ! ! 

p t  p 112 r l  "~ = - - ~ ! y ( l  z)dz a , o = - ~  ! Y l T - z J d z ,  A20 

To determine the coefficients 6,j one can use Vereshchagin's rule, which replaces the evaluation of 
integrals by multiplication of the corresponding curves (Fig. 4), which considerably reduces the volume 
of calculations. To the left of the diagram in Fig. 4 we show a graph of the function y which, in the 
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characteristic section z = l/4, has the value y = 3A/256, and in the characteristic section z = 3//4 the 
value y = 9A/512. Curves 1 and 2 correspond to unit forces X1 = 1 and X2 = 1, curve 3 is a graph of 
the bending moments as a function of the prescribed system of forces (-Py), and curve 4 is a curve of 
the bending moments in the system after expansion of the static indeterminacy. In particular, in the 
section at the fixing, the moment amounts to 1528PA/125440. 

To determine the coefficients Al0 and A20, analytical integration is necessary, since the function 
y(z) may be arbitrary. 

As a result, from system of equations (2.4) we obtain 

X~ =9PA1(1961), X 2 =169PA1(15680l). 

The strain potential energy is calculated by means of formula (2.3): 

U= 
p2, ½ 

Sy2dz+ 8j,X21 +812XlX 2+ 
2EJ o 

p2A2 1 l 2 
-~-(~22X2 + A I o X  I + A20X 2 = 4.34. i0 -s 
g EJ 

The critical force is determined from the condition 17 = 0, from which it follows that 

P = P, = 52.5F_A l/2 

We will compare the accuracy of the approximate solution obtained with the critical force determined 
by means of formulae (1.1) and (1.2): 

=I56  byformula (1 .1 )  
p, =~/E_~J, ~ t 51.12 for accurate solution [5] 

Thus, in the example considered the error of using the calculation of U by means of formula (1.2) 
amounts to 9.5%, while calculation of U by means of formula (1.3) leads to an error of 2.7%. 

An approximate solution of other problems of the stability of compressed rods can also be obtained 
in a similar way. For example, for the rod shown in Fig. 5, with l0 = 0.3/we have 

EJ 
P" =¢7'  

81.5 by formulae (1.1) and (1.2) 

=/74.4 by formula (1.3) 

L64 for the accurate solution 
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Thus, the calculation of the potential energy by means of formula (1.3) leads, in a number of cases, 
to better agreement with the accurate solution than calculation of U by means of formula (1.2). 

3. THE E N E R G Y  M E T H O D  IN V I B R A T I O N  T H E O R Y  

The method described for determining the extraneous unknown quantities in statically indeterminate 
systems can also be used in problems of determining the natural frequencies of vibrations of rods. The 
Grammel method [6], widely used in vibration theory, was used in [7] to solve the statically determinate 
problem of calculating the frequency of transverse vibrations of a cantilever beam. Taking an elementary 
example, we will show that it is possible to extend Grammel's method to statically indeterminate systems. 

Consider the longitudinal vibrations of a rod of constant cross-section, fastened at its ends [7]. We 
will assume an amplitude function in the form 

u = sin (nz/l) 

which corresponds to an accurate form of the natural vibrations of the first frequency. 
Then, the maximum kinetic energy of motion and the maximum strain potential energy are calculated 

by means of the formulae 

12Su2dz Trnax = "~ p = p2pFl 
0 

Uo= l.--~fIg-p2pF I - c o s  dz = l~X2-2gp2pFl+2P4f)2F2 
2EF'oL 

where p is the frequency of natural vibrations, and X is the unknown reaction at the support. 
To determine the reaction in a statically indeterminate system, we use the equation 

aUolaX = 0 

essentially equivalent to Hamilton's variational principle. We then obtain 

X = p2pFlln, U 0 = p4p2F2131(4•2EF) 

and the equation Tmax = U0 leads, as expected, to an accurate solution for the first frequency 

p = n[E I (pl  ~)]½ 

Another example is provided by the transverse vibrations of rod rigidly clamped at its ends. In this 
case, for a rod of length l, the accurate solution of the first natural frequency [7] is 
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Pl = 22.44EJ I(mo 14 ) (3.1) 

Approximate solution by Rayleigh's formula 

I 2 2 I -I 
d u  2 p2=IEJf---TT ] dz(lmou dz) 

o \ a z  ) \o ) 

for the function u = 1 - cos (2~/ / )  leads to a value differing from (3.1) in a factor of 22,8 instead 
of 22.4. 

Using Grammel's  method, for the half-rod we take u = 1 + cos (2rrz//). We than obtain the following 
expression for the maximum kinetic energy of motion and the intensity of the inertia forces 

Tma ~ = 3p2moll8, q = P2m0(I +cosx),  x = 2rtzll 

The transverse force in the section 

z PZmol (x + sin a = fqdz = x) 
o 2~ 

The bending moment 

z 2 2 2 ( l ? ( x  M=-x+IQdz=-X÷Po - - - c o s x + l )  

where X is the unknown bending moment in the middle section. 
Calculation of the strain potential energy by means of the formula 

I ~ M2dz 

and the determination of X from the condition OUo/OXo give 

2 l 2 ~2 

Setting Tmax = Uo, we obtain an accurate value of the first natural frequency. 
Thus, the use of the method described to deteimine the extraneous unknown quantities Jn problems 

of the stability and vibrations of rods improves the accuracy of the approximate solutions obtained. 
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